K P B

स्वागतम...सुस्वागतम..."Nitya Study Centre" या सर्वसमावेशक ब्लॉग ला भेट दिलेल्या मान्यवरांचे हार्दिक स्वागत... शै. वर्ष-२०२०-२१ इ.१२ वी निकाल व मूल्यमापन पद्धती जाहीर... NEWS : दहावीच्या विद्यार्थ्यांना मिळणार ड्रॉईंगचे अतिरिक्त गुण... "ज्ञानगंगा" शैक्षणिक कार्यक्रम दहावी आणि बारावीच्या विद्यार्थ्यांसाठी, आजपासून सह्याद्री वाहिनीवर सुरू... दहावीचा निकाल तयार करण्याचे फॉर्मुले ठरले... MHT-CET Exam 2021: एमएचटी-सीईटी परीक्षेच्या ऑनलाईन अर्जांची नोंदणी आजपासून 7 जुलै पर्यंत राहणार सुरु नववी आणि अकरावीच्या विद्यार्थ्यांच्या मूल्यमापनाबाबत... कोविड टेस्ट...खूप  महत्वाची माहीती..अवश्य वाचा व इतरांनाही पाठवा... दहावी व बारावीतील विद्यार्थ्यांच्या परीक्षेसाठी ताण तणावाचे व्यवस्थापन - विशेष मार्गदर्शन सत्रांचे आयोजन... इ.11 वी व 12 वी आरोग्य व शारिरीक शिक्षण मुल्यमापन व गुणदान योजना... आनापान ध्यान साधना - अर्थ,पद्धत,फायदे आणि प्रशिक्षाणा विषयी माहिती.. दहावी आणि बारावीच्या लेखी व प्रात्यक्षिक परीक्षेच्या तारखा जाहीर...

Thursday, 17 June 2021

7. Cell Division 

Part 01 - Cell cycle to

  • Life of all multicellular  organisms starts from single  cell  i.e. zygote.  
  • Growth of every  living  organism depends on cell  division. 
  • As stated  in the  cell  theory, every  cell  arises from the pre-existing cell.
Cell cycle :
  • Sequential  events occurring in the life of a cell is called cell cycle.  
  • There are two phases of  cell  cycle  as -
  1. Interphase  and 
  2. M-phase. 
  • During interphase, cell undergoes growth or rest  as per  the  need.  
  • During M-phase, the  cell undergoes division. 
  • Interphase alternates  with the period of division.  
Interphase : 
  • Interphase is the stage between two successive cell  divisions. 
  • It is the longest phase of cell cycle during which the cell is highly active and  prepares  itself for  cell division.  
  • The interphase is  divisible into  three sub-phases  as G-phase, S-phase and  G-phase. 
G1-phase :
  • This is also known as first gap period or first growth period. 
  • It starts immediately after cell division. 
  • Cell performs RNA synthesis (mRNA, rRNA  and t-RNA), protein  synthesis and synthesis of membranes during this phase. 
S-phase :
  • It is synthesis phase in which DNA is  synthesized  or  replicated,  so that  amount  of DNA per cell doubles.
  • Histone proteins are also synthesized during this phase. 
G2  phase : 
  • G2  is the second growth phase, during  which  nucleus  increases in  volume. 
  • Metabolic activities essential for  cell division occur during this phase.  
  • Various proteins necessary for cell  division are synthesized during this phase. 
  • Besides,  RNA  synthesis also occur during this phase. 
  • In animal  cells, a daughter pair of centrioles appear near the pre-existing pair.
M-phase or  period of division :
  • 'M'  stands for mitosis or meiosis. 
  • M-phase involves -
  1. karyokinesis and 
  2. cytokinesis. 
  • Karyokinesis is the division of nucleus into two daughter nuclei.
  • Cytokinesis  is  division  of cytoplasm resulting in two daughter cells. 

Part 02 - Types of cell division - Amitosis


Types of cell division : 

  • Three kinds  of cell division are found in animal cells.  
  • They are - 
  1. Amitosis or  direct division
  2. Mitosis or indirect  division and 
  3. Meiosis or reductional division.
  • Mitosis can be performed  by haploid as well as diploid  cells but meiosis can be performed by diploid cells only. 
  • In honey bee, drones develop  from haploid unfertilized  eggs whereas  in  Marchantia, haploid spores form gametophyte by mitosis.

Amitosis :  

  • It is the simplest mode of  cell division. 
  • During amitosis, nucleus elongates and a constriction  appears somewhere  along its length.  
  • This constriction  deepens  and divides the nucleus into two daughter nuclei.  
  • This is  followed by  the division of  the cytoplasm which results in the formation of two daughter cells.  
  • This division  occurs in unicellular organisms, abnormal cells,  old cells and in foetal membrane cells.

Part 03 - Mitosis


Mitosis :  

  • This is a type of cell division in which a  cell divides to form two similar daughter cells  which are identical  to the parent cell. 
  • It is completed in two steps as -
  1. Karyokinesis and 
  2. Cytokinesis. 
  • Karyokinesis is nuclear division which is sub-divided into -  
  1. prophase
  2. metaphase
  3. anaphase and 
  4. telephase.  
  • Although  for the sake of convenience  above mentioned  steps are used, it  must be  remembered  that  mitosis is a continuous process that starts with the disappearance of nuclear membrane  in prophase and ends with  separation  of two fully formed cells after cytokinesis. 
1. Prophase :

  • This  phase  involves -
  1. condensation of chromatin  material,
  2. migration  of centrosomes, 
  3. appearance of  mitotic apparatus and 
  4. disappearance of nuclear membrane.

  • Due  to  condensation,  each  chromosome becomes visible under light microscope which can be  seen with its sister-chromatids connected  by centromere.  
  • The nucleolus starts to disappear. 
  • Nuclear membrane disintegrates and disappeares gradually.
  • Centrosome  which had undergone duplication during interphase begins  to move  towards opposite  poles of the cell. 
  • Mitotic apparatus is almost completely formed.
 2. Metaphase :

  • In  this  phase,  chromosomes are completely  condensed so  that they appear very short. 
  • Sister-chromatids and centromere become very prominent.  
  • All the chromosomes lie at equatorial plane of  the cell.  This  is called metaphase plate. 
  • Mitotic spindle is fully formed. 
  • Centromere  of each chromosome divides into two, each being associated with a chromatid.


3. Anaphase  :

  • The chromatids of each chromosome separate and form two chromosomes called daughter chromosomes.
  • The formed chromosomes  are pulled away in opposite direction by  spindle apparatus. 
  • Chromosomes being pulled  away  appear like a bunch  of banana during  midway of anaphase. 
  • Each set of chromosomes reach at opposite poles of the cells marks the end of anaphase.
4. Telophase  :

  • The telophase  is the final stage of karyokinesis.  
  • The chromosomes  with their centromeres at the poles begin to uncoil, lengthen and loose their individuality.  
  • The nucleolus begins  to reappear. 
  •  The nuclear membrane begins to appear around the chromosomes.
  •  Spindle fibres break down and get absorbed in the cytoplasm.  Thus two daughter nuclei are formed in a cell.
Do you know ?
  • Pulling away of daughter chromosomes is achieved by elongation and shortening of two types of spindle fibres. 
  • Spindle  fibre present between centriole  and centromere,  called as kinetochore  fibres contract and  the spindle fibres  present between two opposite centrioles,  called  as polar fibres elongate.

Cytokinesis :
  • The  division of the  cytoplasm into two daughter cells is called cytokinesis. 
  • The  division starts with a constriction.  This constriction  gradually deepens and ultimately joins in the  centre  dividing into  two daughter cells.  
  • This process of division of cytoplasm is perpendicular  to the spindle.  
  • This mechanism  of cytokinesis is characteristic of animal cells. However, plant cells are covered by  a relatively  non-flexible  cell wall.
  •  Due to this, furrow can not be formed. Instead, cell  wall/ partition starts to appear at the centre of the cell and grows outward to meet the existing lateral  walls.  
  • The formation of the new cell wall begins with the formation of a simple precursor, called the 'cell-plate'  that represents the middle lamella between the walls  of  two adjacent cells. 
  • At the time  of cytoplasmic  division, organelles  like mitochondria and plastids get distributed between the two daughter cells. 
Significance of mitosis :
  • As  mitosis  is equational division, the chromosome number is maintained  constant. 
  • It ensures equal distribution of the nuclear and  the cytoplasmic content between the daughter cells, both quantitatively  and qualitatively.  
  • The hereditary material  (DNA)  is also equally distributed. 
  • It helps in the growth and development  of organisms.
  • Old and worn-out cells  are replaced through mitosis.  
  • It helps  in the asexual reproduction of organisms and vegetative propagation  in plants. 
  • The process of mitosis also maintains the  nucleo-cytoplasmic  ratio. Although mitosis is a very reliable  process for  preserving the genetic make-up of  cells or organisms, it cannot introduce variation or new combination of existing genes.
Death of cell  :
  • You may think of it as a bad for cells in your body to die. In many cases, that's true:  it's not  good for cells  to  die  because of an injury (for example,  due to scrape or a harmful chemical),  which is called necrosis
  • However, some  cells  of our body die;  not randomly but in a carefully controlled  way. 
  • For example,  during the embryonic development, the cells between the embryonic fingers died in a process called apoptosis to give a definite shape to the fingers.  
  • This is a common  form of programmed cell death where cells undergo "cellular  suicide" when they receive  certain signals.  
  • Apoptosis  involves the cell death, but it benefits the organism as a whole (for instance, by letting fingers develop  or by eliminating potential cancer cells). 

Part 04 - Meiosis I

Meiosis :  

  • The term meiosis was  coined by J. B. Farmer  in  1905. It  takes  place  only in reproductive cells during the formation of gametes.  
  • By this  division, the  number  of chromosomes is reduced to half, hence it is also called  reductional division. 
  • The cells in which meiosis take place are termed as meiocytes
  • Meiosis produces four haploid daughter cells from  a diploid parent  cell. 
  • Meiosis is of two subtypes :
  1. First meiotic division or  Heterotypic division – (Meiosis I) 
  2. Second  meiotic division or  Homotypic division (Meiosis II) A. 
Meiosis I /First meiotic division/ Heterotypic division :
  • During 1st  meiotic  division, diploid cell is divided into two haploid cells.  
  • The daughter cells resulting  from this division are different from the parent cell in chromosome number.
  •  Hence this division is also called  heterotypic division. 
  • It consists of the phases like -  
  1. prophase-I
  2. metaphase-I
  3. anaphase-I
  4. telophase-I and 
  5. cytokinesis-I 
Prophase-I :  

  • This phase has longer duration. 
  • Significant features which are peculiar to meiosis occurs in this phase.  
  • This phase can be sub-divided into five sub-stages  as 
  1. Leptotene
  2. Zygotene
  3. Pachytene
  4. Diplotene and 
  5. Diakinesis. 
Leptotene : 
  • The volume of  nucleus increases. 
  • The chromosomes  become distinct, long thread-like and coiled.  
  • They take up a specific orientation-  the 'bouquet stage' inside the nucleus.  
  • This is characterised with the ends of chromosomes converged towards that side of the nucleus where the centrosome  lies. 
  • The centriole  divides into  two and migrate  to opposite poles. 
Zygotene :  
  • Intimate pairing of non-sister chromatids  of homologous chromosomes takes place by formation of synaptonemal complex.  
  • This pairing  is called  synapsis
  • Each pair consists of a maternal  chromosome and a paternal chromosome. 
  • Chromosomal pairs are called bivalents or tetrads. 
Pachytene :  

  • Each individual chromosome begins  to split  longitudinally  into  two similar chromatids.  
  • At this stage, tetrads become more clear in appearance because of presence of four visible chromatids.  
  • The homologous chromosomes of each pair begin to separate from  each  other. 
  • However, they  do not completely  separate but remain attached together at one or more points.
  • These points appear like a cross (X) known as chiasmata.  
  • Chromatids break at these points and broken segments are exchanged between non-sister chromatids of homologous chromosomes.  This is called as crossing-over or recombination. 
Diplotene :  

  • Though chiasmata are formed in pachytene, they become clearly visible in diplotene  due to the beginning  of repulsion between  synapsed homologous chromosomes. This is called desynapsis.  
  • It involves disappearence of synaptonemal complex.

Diakinesis :  
  • In this phase, the chiasmata  beings to move along the length of chromosomes from the centromere towards  the ends of chromosomes.  
  • The displacement  of chiasmata is termed  as terminalization.  
  • The terminal chiasmata exist till the metaphase. 
  • The nucleolus  disappears and the nuclear  membrane also begins  to  disappear. 
  • Spindle fibres starts to appear in the cytoplasm.

Metaphase-I :  

  • The spindle fibres become  well developed. 
  • The tetrads move towards the equator and they orient themselves on the equator in such a way that centromeres of homologous tetrads lie towards  the poles  and arms towards the  equator.
  • Due to increasing repulsive  forces between homologous chromosomes, they are ready to separate from each other.

Anaphase-I :  

  • In this  phase, homologous chromosomes are pulled away  from each other and carried towards opposite poles by spindle  apparatus. This is disjunction.  
  • The  two sister chromatids of each  chromosome  do not separate in meiosis-I.
  • This is reductional division.  
  • The sister chromatids of each chromosome  are connected  by a common  centromere. 
  •  Both sister  chromatids  of each  chromosome  are  now different in terms of  genetic content as  one of them has undergone the recombination
Telophase-I :  
  • The haploid number of chromosomes after reaching their respective poles, become uncoiled  and elongated.  
  • The nuclear  membrane  and the nucleolus  reappear and thus two daughter nuclei are formed.

Cytokinesis-I :  

  • After the karyokinesis, cytokinesis occurs and two haploid cells are formed.
  • In many cases, these daughter  cells pass through a short resting phase or interphase / interkinesis. 
  • In some cases, the  changes of the telophase  may not occur.  
  • The anaphase directly leads to the prophase of meiosis II.

Part 05 - Meiosis II


Meiosis II / Second meiotic  division / Homotypic Division :

  • During this division,  two haploid  cells formed during first meiotic  division divide further into four  haploid cells.  
  • This division is similar to mitosis.  
  • The daughter cells formed in second meiotic  division are similar  to their parent cells  with respect  to the chromosome number formed in meiosis-I. Hence this division is called homotypic division.
  • It consists of the following  phases : 
  1. prophase-II
  2. metaphase-II
  3. anaphase-II
  4. telophase-II and 
  5. cytokinesis-II. 









Prophase-II :  

  • The  chromosomes  are distinct with two chromatids.  
  • Each  centriole  divides into two resulting  in the formation  of two centrioles  which  migrate  to opposite  poles and form asters. 
  • Spindle fibres are formed between the centrioles.  
  • The nuclear membrane and nucleolus disappear. 
Metaphase-II : 
  • Chromosomes gets arranged at the equator.  
  • The two chromatids of each chromosome are separated by the division of the centromere. 
  • Some spindle fibres are attached to the  centromeres and some are arranged end to end between two opposite centrioles. 
Anaphase-II : 
  • The separated chromatids become  daughter chromosomes and move to opposite poles due to the contraction  of the spindle fibres attached to centromeres. 
Telophase-II : 
  • During this stage the daughter chromosomes uncoil.  
  • The nuclear membrane surrounds each  group of  chromosomes  and the nucleolus reappears.

Cytokinesis-II : 
  • Cytokinesis occurs after nuclear division.  
  • Two  haploid cells are formed from each haploid cell. Thus, in all, four haploid daughter cells  are formed.  
  • These cells undergo further changes to develop into gametes
Significance of Meiosis :  
  • Meiotic division produces gametes.  
  • If it  is absent, the  number of chromosome would double or quadruple resulting in the formation of monstrosities (abnormal forms).  
  • The constant number of  chromosomes in a  given species across generations is maintained  by meiosis. 
  • Because of crossing over, exchange  of genetic  material takes place leading to genetic variations, which are the raw materials for evolution.

Source from Intertnet

No comments:

Post a Comment