K P B

स्वागतम...सुस्वागतम..."Nitya Study Centre" या सर्वसमावेशक ब्लॉग ला भेट दिलेल्या मान्यवरांचे हार्दिक स्वागत... शै. वर्ष-२०२०-२१ इ.१२ वी निकाल व मूल्यमापन पद्धती जाहीर... NEWS : दहावीच्या विद्यार्थ्यांना मिळणार ड्रॉईंगचे अतिरिक्त गुण... "ज्ञानगंगा" शैक्षणिक कार्यक्रम दहावी आणि बारावीच्या विद्यार्थ्यांसाठी, आजपासून सह्याद्री वाहिनीवर सुरू... दहावीचा निकाल तयार करण्याचे फॉर्मुले ठरले... MHT-CET Exam 2021: एमएचटी-सीईटी परीक्षेच्या ऑनलाईन अर्जांची नोंदणी आजपासून 7 जुलै पर्यंत राहणार सुरु नववी आणि अकरावीच्या विद्यार्थ्यांच्या मूल्यमापनाबाबत... कोविड टेस्ट...खूप  महत्वाची माहीती..अवश्य वाचा व इतरांनाही पाठवा... दहावी व बारावीतील विद्यार्थ्यांच्या परीक्षेसाठी ताण तणावाचे व्यवस्थापन - विशेष मार्गदर्शन सत्रांचे आयोजन... इ.11 वी व 12 वी आरोग्य व शारिरीक शिक्षण मुल्यमापन व गुणदान योजना... आनापान ध्यान साधना - अर्थ,पद्धत,फायदे आणि प्रशिक्षाणा विषयी माहिती.. दहावी आणि बारावीच्या लेखी व प्रात्यक्षिक परीक्षेच्या तारखा जाहीर...

Saturday 19 June 2021

8. Plant Tissues and Anatomy 


Part 01 - Tissue and Classification of Meristem

Tissue :    
  • Anatomy is the study of internal structure  of organism
  • Organs are made up of  group  of  cells.  
  • A  group  of  cells  having essentially a common function and origin is called as tissue
  • Plant tissues are grouped as [on the basis of its ability to divide ]
  1. meristematic  tissue and 
  2. permanent  tissue 
Meristematic Tissue  : 












  • It  is  a  group of young cells.  
  • These  are living cells with ability  to divide in the regions where they are persent.  
  • These are polyhedral or isodiametric  in shape without intercellular spaces.
  • Cell wall is thin, elastic, mainly composed of cellulose.  
  • Protoplasm is dense with distinct  nucleus at the center  and vacuoles if present, are very small. 
  • Cells show  high rate of metabolism.  These cells are immature.

1. Classification of Meristem :   [ Based  on Origin] :

  1. Primordial  meristem
  2. Primary meristem 
  3. Secondary meristems

1. Primordial  meristem :
  • Primordial  meristem or  promeristem is also called  as embryonic meristem.  
  • Usually occupying very  minute area  at  the tip of  root and shoot.  
2. Primary meristem :
  • Originates from the  primordial  meristem  and occurs  in  the plant body  from the beginning, at the root and shoot apices. 
  • Cells are dividing and different permanent tissues are produced from primary meristems.  
3. secondary meristems :
  • Secondary meristematic  tissues develop from living permanent tissues during later stages of plant growth; hence are called as secondary meristems.  
  • This tissue occurs in the  mature  regions of root and shoot of many plants.  
  • Secondary  meristem  is always lateral (to the central axis) in position e.g. fascicular cambium, inter fascicular  cambium, cork cambium. 

2.Classification of Meristem :   [ Based  on Position] :
















  1. Apical meristem 
  2. Lateral meristem
1. Apical meristem :
  • Produced from promeristem and forms  growing point of apices of root, shoot and their  lateral  branches. 
  • It brings  about increase in length of plant body and called as apical initials. 
  • Shoot apical meristem  is terminal  in position whereas in root it is subterminal i.e. located  below the root cap. 
2. Intercalary meristematic  :
  • Intercalary meristematic tissue is present in the  top or base area of node.  
  • Their  activity  is mainly seen in monocots.These  are short lived.
3. Lateral meristem :
  • Present  along the sides of central axis of organs. 
  • It takes part in increasing girth of stem or root. eg. intrafascicular cambium. 
  • It is found in vascular bundles of gymnosperms and dicot angiosperms. 
3. Classification of Meristem :   [ Based  on Function] :
  1. Protoderm
  2. Procambium
  3. Ground meristem

1. Protoderm :
  • Young growing region of the plant has  Protoderm  that forms protective  covering like  epidermis  arround the  various organs. 
2. Procambium :
  • Meristem called  Procambium  is   involved in developing  primary vascular tissue.  
3. Ground meristem :
  • The other structures like cortex, endodermis, pericycle  medullary rays, pith are formed from the region of  Ground meristem. 
  • These  are three groups of meristem based on function.

Part 02 - Simple permanent tissues

Permanent tissue : 

  • This is  group of  cells which have lost the capacity of division and aquired permanent size, shape and functions. 
  • It is due to different morphological,  physiological and functional changes that  occur  during maturation  of the cell. 
  • Depending upon types of cells, there are two types as -
  1. Simple permanent tissues and 
  2. Complex  permanent tissues.

Simple permanent tissues : 


  • These  are made up of only one type of cells carrying similar functions.  
  • This tissue is either living or dead. 
  • Following are the types of simple permanent tissues namely - 
  1. Parenchyma
  2. Collenchyma and 
  3. Sclerenchyma
1. Parenchyma  : 

  • Cells  in this tissue are thin walled, isodiametric,  round,  oval to polygonal or elongated  in  shape. 
  • Cell wall  is composed of cellulose.
  • Cells are living with prominent nucleus and cytoplasm with large vacuole. This is less specialized permanent tissue.
  • Parenchyma has distinct  intercellular spaces. Sometimes, cells may show  compact arrangement.  
  • The cytoplasm of adjacent cells is interconnected  through plasmodesmata and thus forms a continuous tissue.  
  • These cells  are distributed  in all the parts of plant body  viz. epidermis, cortex, pericycle, pith, mesophyll cells, endosperm, xylem and phloem.  
  • These cells store food,  water, help in gaseous exchange, increase  buoyancy, perform photosynthesis  and different  functions  in  plant body. 
  • Dedifferentiation  in parenchyma  cells develops vascular cambium and cork cambium at the time of secondary growth.

2. Collenchyma  : 

 













  • It is a simple permanent tissue made up of living  cells.  
  • The cell  wall is cellulosic but shows  uneven deposition of cellulose and pectin especially at corners.  
  • The walls may  show presence  of pits.  
  • Cells  are similar like  parenchyma containing  cytoplasm, nucleus and  vacuoles but small in size and without intercellular  gaps.  Thus appears to be compactly  packed.  
  • The cells are either circular, oval or angular in transverse section. 
  • Collenchyma  is living mechanical  tissue and serves different functions  in  plants.
  • It  gives mechanical strength to young  stem and  parts like   petiole  of leaf. 
  • It allows bending and pulling action in plant parts and also prevents tearing of leaf. 
  • Growth of organs and elongation are other functions. 
  • Collenchyma  is usually absent in monocots and roots of dicot plant.


3.  Sclerenchyma  :













  • It  is simple  permanent  tissue made  up of compactly  arranged thick  walled dead cells.  
  • The cells are living at the time of production but at maturity  they become  dead. 
  • As  cells are devoid of  cytoplasm their thickened walls are due to uniform  deposition  of lignin. 
  • Cells remain  interconnected through several pits. It is of two types viz. 
  1. fibres and 
  2. sclerids. 
1. Fibres 

  • Fibres  are thread-like, elongated and narrow structures with  tapering and  interlocking end walls. 
  • These are mostly in bundles, pits are narrow,  unbranched and oblique.  
  • They provide mechanical  strength. 

2. Sclerids
  •  Sclerids are usually broad, with  blunt  end  walls.  
  • These  occur singly  or in  loose groups and their  pits  are deep branched and straight. 
  • These are developed due  to secondary thickening  of parenchyma cells and provide stiffness only.
  • This tissue functions  as the  main mechanical tissue.  
  • It  permits bending, shearing and pulling. 
  • It gives rigidity to leaves and prevents it  from falling.  It also gives rigidity  to epicarps and seeds.
  •  Commercial  fibres are also produced from sclerenchyma fibres. e.g. jute, flax, hemp.




Part 03 - Complex permanent tissues

Complex permanent tissues  :  
  • This  tissue is heterogenous comprising of more  than one type of  cells and  all function as  a  single unit. 
  • This tissue is involved in conducting  the sap and food from source to sink area
  • Xylem and phloem are the complex tissues present in plants. 
1.  Xylem  :  
  • It is a  dead complex  tissue. Components  of xylem  are -
  1. tracheids 
  2. vessels
  3. xylem parenchyma and 
  4. xylem fibres.
  • The xylem  also provides mechanical strength to the plant body.  
  • Tracheids and vessels conduct  water  and minerals.  These are also known as hadrome.

1. Tracheids :
  • In pteridophytes and gymnosperms tracheids are conducting elements. 
  • Tracheids  are elongated,  tubular  and dead cells.  The ends are oblique and tapering. 
  • The  cell  walls are uniformly  thickened and lignified.  This  provides mechanical strength.  
  • Tracheids contribute 95%  of  wood in  Gymnosperms and 5% in  Angiosperms. 
  • The different  types  of  thickening patterns are seen on their walls such as
                                    
  1. Annular  (in the form of  rings)
  2. Spiral  (in  the  form  of spring/ helix)
  3. Scalariorm  (ladder like)
  4. Pitted  is most advanced type (small circular area) which may be simple or bordered. 

2. Vessels 
  • Vessels are conducting elements in angiosperms, Selaginella  (Pteridophyte) and Gnetum (Gymnosperm) show presence of vessels.
  • Vessels  are longer than tracheids with perforated or  dissolved ends  and  formed by union of several vessels end to end.  
  • These are involved  in conduction  of water and minerals. 
  • Their lumen is wider than tracheids and the thickening is due to lignin and similar to tracheids.  
  • In monocots,  vessels are rounded where as they are angular in dicot angiosperms. 
  • The first formed xylem vessels (protoxylem) are small  and have either  annular or spiral thickenings while latter formed have  larger vessels (metaxylem)  have reticulate  or pitted thickenings.  
  • When protoxylem is arranged towards  pith and metaxylem  towards  periphery it is  called as  endarch   e.g.  in  stem  and when the position is  revert as  in the roots  is  called as exarch.
3. Xylem parenchyma :
  • Xylem parenchyma  cells are small associated with tracheids and vessels.  This is the only living tissue among this complex tissue.  
  • The  function  is to  store food (starch)  and sometimes tannins.  
  • Parenchyma are involved in lateral or radial conduction of water or sap.
4. Xylem  fibres :
  • Xylem  fibres  are sclerenchymatous cells and serve mainly mechanical  support. These are called wood  fibres. 
  •  These are also elongated,  narrow and spindle  shaped. 
  • Cells are tapering at both the ends and their walls are lignified.  

Phloem :  
  • This  is a living tissue. It  is also called as bast.  
  • Phloem is responsible  for  conduction of organic food material  from source (leaf generally)  to  a sink (other plant parts). 
  • Phloem was named as leptome by Haberlandt as similar to xylem.
  • On the basis of origin, it is 
  1. proto (first formed) and 
  2. meta (laterly formed) phloem.
  •  It is composed of- 
  1. sieve tubes
  2. sieve cells
  3. companion cells
  4. phloem parenchyma and 
  5. phloem fibres.

1. sieve tubes :
  • Sieve tubes  are long tubular conducting channel  of phloem.  
  • These are placed  end to end with bulging at end walls.  
  • The sieve tube has sieve plate  formed by septa with small  pores. 
  • The sieve plates connect  protoplast of adjacent sieve tube cells.  

2. sieve cells :
  • The sieve tube cell  is a living cell  with a thin layer of cytoplasm but loses its nucleus at maturity.  
  • The sieve tube cell is connected to companion cell through phloem parenchyma by plasmodesmata.  
  • Sieve cells  are found in lower plants like  pteridophytes  and gymnosperms.  
  • The cells  are narrow, elongated with tapering ends and sieve area located laterally
3. Companion cells :
  • Companion cells  are narrow elongated and  living.  
  • These cells are  laterally associated with sieve  tube elements.  
  • Companion  cells have dense cytoplasm and prominent nucleus.
  • Nucleus of companion cell  regulates functions  of sieve  tube  cells  through simple pits. 
  • From origin point of  view, sieve tube cells and companion cell are derived from same cell. 
  • Death of the one results in death of the other type. 
4. Phloem parenchyma :
  • Phloem parenchyma  cells  are living, elongated found associated with sieve tube and companion cells.  
  • The chief function is to store food, latex,  resins, mucilage, etc.  
  • The  cells carry  out lateral  conduction of food material.
  •  These cells are absent in most of the monocots. 
5. Phloem fibres :
  • Phloem fibres  are the only dead tissue among this unit.  
  • These are sclerenchymatous
  • Generally absent in primary phloem, but present in secondary phloem. 
  • These cells  are with lignified  walls and provide mechanical support.  
  • These are used in making ropes and rough clothes.

Part 04 - Tissue Systems

Tissue Systems :  
  • Plant tissues are derived from meristems and their structure and functions depend on the position.
  • Types of tissue systems [ On the basis of their  structure  and location]  :
  1. Epidermal tissue system
  2. ground tissue system and 
  3. vascular tissue system.
A. Epidermal tissue system :  
  • It forms the outer covering of plant body and is derived from protoderm or dermatogen
  • The two types of structures are seen in epidermal tissue system viz 
  1. epidermis and 
  2. epidermal appendages. 
  • Epidermis  is  the outermost protective cell  layer  made  up of compactly  arranged cells without intercellular spaces. 
  • Cells show  presence of central large vacuole, thin cyctoplasm  and a nucleus.  
  • The  outer  side of the epidermis  is often covered with a waxy thick layer called  the cuticle  which prevents the loss of water. 
  • It may bear hairs. Root epidermis has root hairs.  
  • These are unicellular elongated and involved in absorption of sap from the soil. 
  • In stem, epidermal  hairs are called trichomes.
  • These are generally  multicellular, branched or unbranched, stiff or soft or even secretory. 
  • These  help  in  preventing  water  loss due  to transpiration
  • Small  gateways in the  epidermal  cells are  called  as stoma.  Such stoma  are  controlled or  guarded  by  specially modified cells called guard  cells. 
  •  These guard  cells may be kidney shaped (dicot) or dumbbell  shaped (monocot), collectively called as  Stomata.  
  • Stoma, guard cells and subsidiary cells form a unit called stomatal  apparatus. 
  • Stomata are further covered  by subsidiary  cells. 
  • Guard cells  have chloroplasts  to  carry  out photosynthesis.  
  • Guard cells  change their  turgor pressure causing its opening  and closing, thus they play a vital  role in exchange of gases and water vapour.
 B. Ground tissue system :  
  • All  the plant tissues excluding epidermal and vascular tissue is ground tissue. 
  • It is made up of simple permanent tissue e.g. paranchyma
  • It is present in cortex, pericycle,  pith and medullary  rays in the primary stem and root. 
  • Collenchyma and  schlerenchyma in the hypodermis and chloroplasts containing mesophyll tissue in leaves is also ground tissue. 
C. Vascular  tissue system :  

  • These are  the distinct patches of the complex  tissue viz. Xylem and phloem. 
  • On the basis of their arrangement in the plant body these are  radial  when both the complex tissue are situated separately on separate radius as separate bundle.  This is a common  feature of roots. 
  • In the stem, the complex tissue is collectively  present as neighbours of  each other on  the same radius in the form of  xylem inside and  phloem outside hence called  conointcollateral vascular bundles. 
  • These bundles may be further of open type  (secondary growth takes place)  containing cambium in between them and closed type if cambium is not present (secondary growth absent).  
  • When phloem is present in a  vascular  bundle  on  both  the  sides  of  xylem and intervening cambium  tissue,  it  is called bicollateral vascular bundle.
  • It  is  a feature  of family  Cucurbitaceae
  • When one vascular tissue is completely encircling the  other,  it is  called as  concentric vascular bundle, this may be leptocentric (phloem encircled  by xylem) or hadrocentric (xylem  encircled  by phloem).  
  • When one complex  tissue is encircling on both the faces of the other it is amphicribral (xylem  encircled by phloem  on both faces) and amphivasal (phloem encircled by xylem on both faces). 
Secondary growth in plants : 
  • The vertical growth of  the roots and stems in length with the help of apical  meristem is called as primary growth.
  • Dicotyledonous plants and gymnosperms exhibit increase in girth of root and stem. 
  • In dicot stem, secondary growth begins with the formation of a continuous cambium  ring. 
  • The  cambium present between the primary xylem and primary phloem of a vascular bundle is called intraasicular  cambium.  
  • The cells of medullary rays  adjoining  these intrafascicular cambium strips become meristematic  (regain  the capacity  to divide) and form the  interascicular cambium.  
  • Thus a complete  and continous ring of vascular cambium is formed. 
  • The cambium  ring cuts off new cells, towards both the  sides, inner  and outer.  
  • The cells  that  are cut-off towards pith  (inner  side) mature  into secondary xylem  and cells  that are cut-off towards periphery mature into secondary phloem
  • Generally, amount of secondary xylem is  more than the secondary phloem.
  • In woody plants, secondary  tissues constitute the bulk of  the body.  This provides support, conduction  of water and minerals  and protection.
  •  Lateral meristems  play  a  major role in development of secondary tissues.
 Formation of cambial ring :  

  • With the onset of favourable season, meristematic  cells of intrafascicular cambium become active.
  • Simultaneously,  the ray  parenchyma cells, both fusiform initials  and ray initials  become meristematic. This is known as dedierentiation
  • These form patch of cambial cells (meristematic cells)  in between  the  adjacent  bundles and produce interfascicular cambium
  • Now both intrafascicular  and interfascicular cambium join and form a complete  ring.  This is known as cambial  ring.  
  • This  is possible because  they lie in one plane.

Secondary growth  in roots  :  
  • It is also observed in most of the dicot and gymnospermic roots by producing secondary vascular tissue and periderm.
  • Secondary growth is produced by vascular cambium and cork cambium respectively. 
  • Conjuctive parenchyma  cells present on the inner edges of primary phloem bundles become meristematic.  
  • These cells add secondary xylem  and secondary phloem  on the inner and outer side respectively.  
  • These events are similar to secondary growth in stems.

Part 05 - Wood


Wood : 

  • During favourable conditions,  spring ood  (early wood) is formed which has broader xylem  bands, lighter  colour, tracheids with thin wall and wide lumen,  fibres are less  in  number,  low  density.  
  • Whereas,  during unfavourable season  autumn ood  (late wood) is formed which has  narrow xylem band, darker in colour, lumen is narrow and walls are thick with abundant fibres are present of high density. 
  • Tracheary elements of heartwood are plugged by in-growth of adjacent parenchyma cells  i.e. tyloses.  
  • They are filled  by oils, gums, resins, tannins called as extractives.  
  • Thus inner non-functinal,  durable  part which is resistant to  pathogens is called  duramen  or heartwood. 
  • Outer light, functional part of secondary xylem, cells are living, no deposition, lighter  and less durable, more susceptible to pathogens and involved  in conduction  of sap is called  as  sap ood  (alburnum). 

Part 06 - Cork cambium and secondary growth

Cork cambium and secondary growth: 
  • Increase in diameter of stem by secondary growth is mainly due to the activity of vascular cambium  present the  outer cortical layer.  
  • When epidermis  gets ruptured, it becomes necessary  to  replace these cells by new cells. Phellogen  (cork cambium)  develops in extrastelar  region  of stem. 
  • The  outer  cortical cells of cortex become meristematic and produce a layer of thin walled, rectangular cells.  
  • These cells cut off new cells on both sides.  
  • The cells produced on outer side develop phellem  (cork) wheras on the inner side produce phelloderm (secondary cortex).  
  • The cork  is  impervious in nature  and does not allow entry  of water due to suberized walls. Secondary cortex is  parenchymatous in nature.
  •  Phellogen,  phellem  and phelloderm constitute  periderm.  
  • Activity of cork  cambium develops a pressure on the other cells  and these cells die. 
  • Bark is non-technical term refering to all cell types found  external to vascular cambium  including  secondary phloem. 
  • Bark of early season is soft and of the late  season is hard.
  • Lenticles  are aerating pores present as (raised scars) the  surface of bark.  
  • These  are portions of periderm, where phellogen activity is more, lenticles are means for gaseous and water vapour exchange. 
  • Monocot stems lack cambium  hence secondary growth does not take place. 
  • But  accessory cambium development in plants like,  Dracena,  Agave, Palms and root of sweet potato  show presence  of  secondary  growth. This  is  called  as anomalous secondary  growth

Part 07 - Anatomy of Root, Stem and Leaf

Anatomy of Root, Stem and Leaf : 
A.   Anatomy of Dicot Root : 

  • The transverse section of a typical dicotyledonous root shows following anatomical features.  
  • The outermost single layer of  cells without cuticle is  Epiblema.  
  • Some of its cells are prolonged into unicellular  root hair. 
  • Next to it is the  Cortex  which  consists of several layers of typical  parenchymatous cells.  
  • After the death of epiblema, outer layer of cortex become cutinized  and is called  Exodermis
  • The cortical  cells  store food and water.  The innermost layer of cortex  is called  Endodermis
  • The cells are barrel-shaped and their radial walls bear Casparian strip or Casparian bands composed of suberin. 
  • Near the protoxylem, there  are unthickened  passage cells.  
  • A  single layer  of parenchymatous  Pericycle  is present just below endodermis which bounds the stele or vascular cylinder.  
  • Stele  consists of 2 to 6 radial vascular bundles. 
  • Xylem is exarch. 
  • Based on the number  of groups of xylem  and phloem, the stele may be diarch to hexarch. 
  • A  parenchymatous  connective  tissue or conjunction tissue is present between  xylem and phloem.
  • The central part of stele or vascular cylinder is called  Pith.  
  • It is narrow  and made up of parenchymatous  cells,  with  or without intercellular  spaces.  
  • At later stage, a cambium ring develops between xylem and phloem which causes secondary growth in thickness. 
B.   Anatomy of monocot root  :
                                                        
  • It resembles that of a dicot root in its basic plan.  
  • However, it  possesses more  than six  xylem bundles (polyarch  condition)
  • Pith is large and well-developed.  
  • Secondary growth is absent.

Part 08 - Anatomy of Dicot Stem (Sunflower)

Anatomy of Dicot Stem (Sunflower) : 
A  transverse section of dicot stem shows  the following structures :

  • Epidermis is single,  outermost  layer with multicellular outgrowth called  trichomes.  
  • A layer of cuticle is usually  present  towards the  outer  surface of epidermis.  
  • Cortex  is  situated below the epidermis  and is usually differentiated  into three  regions namely-
  1. hypodermis
  2. general cortex  and  
  3. endodermis  
1. Hypodermis :
  • Hypodermis is situated just below the epidermis and is made of 3-5 layers of collenchymatous  cells. 
  • Intercellular spaces are absent.
2. General cortex :
  • General cortex  is made up of several layers of large parenchymatous cells with intercellular spaces.  
3. Endodermis :
  • Endodermis is an innermost layer of cortex which is made up of barrel shaped cells. It is also called  starch sheath.
  • Stele  is the central core of tissues differentiated into  pericycle,  vascular bundles and  pith.  
  • Pericycle  is the outermost layer of  vascular system situated between the endodermis and vascular bundles. 
  • In sunflower, it  is multilayered  and also called  hard bast
  • Vascular  bundles  are conjoint, collateral, open, and are arranged in a ring. 
  • Each  one is composed of  xylem, phloem and  cambium
  • Xylem is endarch.  
  •  strip of cambium is present between xylem and phloem. 
  • Pith  is situated in the center of  the young  stem and  is made up of large-sized parenchymatous cells with conspicuous intercellular spaces. 

D.   Anatomy of Monocot Stem : 


  • It differs from dicot.  
  • Epidermis  is without trichomes and  the hypodermis is sclerenchymatous.  
  • Vascular bundles are numerous and are scattered in ground tissue. 
  • Each  vascular bundle  is  surrounded by a sclerenchymatous  bundle  sheath. 
  • Vascular bundles are conjoint, collateral  and closed (without  cambium).  
  • Xylem  is endarch  and shows lysigenous cavity. 
  • Pith is absent. 
  • Secondary growth is also absent.

Part 09 -Anatomy of Leaf

Anatomy of Leaf :  

  • Dorsiventral Leaf  is very common in dicotyledonous  plants where the mesophyll tissue is differentiated  into 
  1. palisade and 
  2. spongy parenchyma.  

  • The leaves are commonly horizontal  in orientation  with distinct upper and lower surfaces.  
  • The upper surface which faces the sun is darker than the lower surface. 

V. S. of  Typical dicot leaf : 

  • Upper  epidermis  consists of a single layer  of tightly  packed  rectangular, barrel shaped, parenchymatous cells  which are devoid of chloroplast.  
  • A distinct  layer of cuticle lies on the outside of the epidermis. 
  • Stomata are generally absent. 
  • Between upper and  lower epidermis, there is chloroplast-containing photosynthetic tissue called  Mesophyll
  • Mesophyll  is differentiated  into -
  1. palisade tissue and 
  2. spongy tissue. 
 
Palisade parenchyma 
  • It is present  below upper epidermis and consists of closely packed elongated cells. 
  • The cells contain abundant chloroplasts and help in photosynthesis.  
Spongy parenchyma
  • It is present below palisade tissue and consists of loosely  arranged irregularly  shaped cells  with intercellular  spaces.  
  • The  spongy  parenchyma cells contain chloroplast and are in contact with atmosphere through stomata.
  • Vascular system is made up of a number of vascular  bundles  of varying  size  depending upon the venation. 
  • Each one is surrounded by a thin layer of parenchymatous cells called bundle sheath.  
  • Vascular bundles are closed and xylem towards upper epidermis and phloem towards  lower epidermis. 
  • Cambium is absent hence no secondary growth in the leaf. 
  • Lower  epidermis  consists of a single layer of compactly  arranged rectangular, parenchymatous  cells.  
  • A  thin layer of cuticle is also present.  
  • The lower epidermis  contains a large number of microscopic pores called stomata.  
  • There is an air-space called substomatal chamber at each stoma. 

Isobilateral  Leaf :  
  • In this leaf both the surfaces are equally  illuminated  as both the surface can face  the  sun, and show similar structure.  
  • The two surfaces are equally  green. 
  • Generally  monocotyledonous plants  have isobilateral leaves. 
A typical monocot leaf 

  •  resembles  a dicot  leaf in its anatomical structure. 
  • However, it shows stomata on both the surfaces and mesophyll is not differentiated  into palisade and spongy tissue. 
  • It has parallel veins.  
  • These are conjoint, collateral and closed.


Source From Internet

No comments:

Post a Comment